Tra lo spettacolo della lava e gli anelli di fumo, l’Etna si è esibita in una eruzione invisibile. L’eruzione vulcanica è avvenuta durante una tempesta di neve sul finire di maggio, e ha generato un flusso piroclastico rimasto nascosto per circa 10 giorni, fino a quando le condizioni meteo sono migliorate e ai ricercatori è stato possibile accedere alle aree sommitali del vulcano. Sembrerebbe fantascienza ma è quanto è accaduto lo scorso 21 maggio 2023 sull’Etna, come descritto nello studio «A Hidden Eruption: The 21 May 2023 Paroxysm of the Etna Volcano (Italy)» realizzato da un team di ricercatori dell’Istituto Nazionale di Geofisica e Vulcanologia (Ingv), dell’Università Sapienza di Roma, dell’Università degli Studi dell’Aquila e dell’Università degli Studi di Cagliari.
«Il nostro lavoro, oltre a descrivere scientificamente l’evento eruttivo che ha interessato il cratere di Sud-Est dell’Etna, ha voluto richiamare l’attenzione sull’importanza e sull’efficacia dei sistemi di monitoraggio da remoto dell’Ingv», spiega Emanuela De Beni, vulcanologa dell’Osservatorio Etneo dell’Ingv (Ingv-Oe)e co-autrice dello studio. «Infatti - ha aggiunto - nonostante il cattivo tempo avesse oscurato le telecamere di videosorveglianza installate sul vulcano, le altre stazioni di monitoraggio vulcanologico hanno funzionato correttamente e i segnali sono prontamente arrivati alla nostra sala operativa di Catania, segnalandoci che era in corso un’eruzione con fontana di lava ed emissione di due colate, una verso Sud e l’altra verso Est». Una settimana dopo l’eruzione i ricercatori si sono recati in area sommitale per eseguire rilievi con droni e procedere alla mappatura e quantificazione dei prodotti eruttati. «Una volta giunti sul posto ci siamo accorti che un deposito di cui fino a quel momento non avevamo avuto contezza si era in realtà sovrapposto alla colata di Sud - ha proseguito De Beni - e dopo attente indagini di terreno e analisi sedimentologiche abbiamo scoperto che si trattava di una corrente piroclastica di densita» (PDC - Pyroclastic Density Current), ovvero un flusso di materiale magmatico misto a gas ad alte temperature che era sceso ad alta velocità dai fianchi del vulcano».
A quel punto, ai rilievi sul campo e via drone sono state affiancate le analisi delle immagini satellitari e dei dati radar forniti dagli aeroporti di Catania-Fontanarossa e Reggio Calabria-Tito Minniti e da un impianto sul Monte Lauro (SR), nonché lo studio approfondito del tremore vulcanico e dell’infrasuono forniti dai sistemi di monitoraggio dell’Ingv. Tutto ciò ha permesso di ricostruire l’emissione di una colonna di cenere (cosiddetta plume) di altezza compresa tra i 10 e i 15 chilometri, frutto di un’eruzione suddivisa in tre fasi: una prima fase debolmente stromboliana, una fase stromboliana vera e propria e, infine, una fontana di lava. L’Etna, vulcano in continuo mutamento, ha reso ancora una volta evidente come possa generare fenomeni vulcanologici vari e potenzialmente pericolosi, da monitorare costantemente. «Sono state necessarie tre campagne con drone, durante le quali sono state catturate ben 2.311 immagini, termiche e non, poi elaborate per realizzare la mappa e la quantificazione dei prodotti eruttati, e un’altra campagna di terreno finalizzata al campionamento del deposito della corrente piroclastica», ha sottolineato De Beni. «Questo lavoro di squadra - ha concluso -ha evidenziato ancora una volta la fondamentale importanza del sistema di monitoraggio vulcanologico da remoto dell’Ingv-Oe, ma anche dell’ancora imprescindibile osservazione diretta del geologo di terreno che ci ha permesso di riconoscere il flusso piroclastico, altrimenti non identificabile da remoto», conclude la ricercatrice.
Caricamento commenti
Commenta la notizia